
High performance cellular level
agent-based simulation with FLAME
for the GPU
Paul Richmond, DawnWalker, Simon Coakley and Daniela Romano
Submitted: 2nd September 2009; Received (in revised form): 4th December 2009

Abstract
Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate inter-
est, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with ‘bottom-up’ simulation
approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations
can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is
a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simula-
tion of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU
hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format.
This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning
curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems,
FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This
allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the
possibility of real-time visualisation for simple visual face-validation.

Keywords: agent-based modelling; high-performance computing; GPU; cellular modelling; computational modelling; parallel
simulation

INTRODUCTION
High-performance parallel computing offers enor-

mous potential in analysing data and accelerating

the simulation performance of large-scale complex

system biology models. Whilst bottom-up [1],

high-volume molecular level systems are often

easier to parallelise and more computationally

demanding than low volume top-down approaches

[2, 3], the middle-out alternative centred on the cel-

lular level is arguably a more natural starting point

[4]. By modelling cells, the basic unit of biological

function, predictive models based on the large

amounts of data available at the cellular level, are

able to provide insight into larger biological systems.

Of the techniques used to model cellular systems,

agent-based modelling (ABM), takes an

individual-based approach, which unlike

equation-based alternatives [5, 6], allows individual

cells to be tracked throughout a simulation. Whilst

this creates an enormous amount of data, this can be

easily visualised to allow comparison between invitro/
in vivo and in silico experiments for simple visual

model validation.

Traditional ABM methods are highly serialised

and are often based on mobile discrete spaced

agents [7, 8]. Continuous spaced agent simulation

PaulRichmond is a Royal Academy of Engineering Student Development Fellowship Awardee at the University of Sheffield, where

he has recently been awarded a Doctoral Prize Fellowship.

DrDawnWalker is an RCUK Fellow in the Computational Systems Biology group, in the Department of Computer Science, at the

University of Sheffield.

Simon Coakley has a doctorate in Computational Systems Biology. His current research involves adapting a parallel agent based

framework for economic modelling. He currently resides at the University of Sheffield.

Daniela Romano, lecturer in Computer Science, conducts research in virtual reality (VR) and is the team leader in the Kroto

Research Institute for Multidisciplinary research at the University of Sheffield.

Corresponding author. Paul Richmond, The Department of Computer Science, University of Sheffield, Regent Court, 211

Portobello, Sheffield, S1 4DP, UK. Tel: þ44-7793712845; Fax: þ44 (0) 114 222 1810; E-mail: p.richmond@sheffield.ac.uk

BRIEFINGS IN BIOINFORMATICS. VOL 11. NO 3. 334^347 doi:10.1093/bib/bbp073
Advance Access published on 1 February 2010

� The Author 2010. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

 at R
oyal H

allam
shire H

ospital on June 27, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


approaches tend to extend discrete simulation frame-

works and with the exception of swarm systems [9],

remain largely un-parallelised. The lack of parallel

computing software for ABM places stringent limi-

tations on the scale of models that may be simulated.

Likewise, the trend toward multi-core processors

[10] suggests that serial simulations are unlikely to

be benefit from new processor architectures. Whilst

multi-core processors allow Moore’s law [11] to

continue to predict increasing overall processing

speed, ABM software must be able to sufficiently

take advantage of the independent cores through

new parallel algorithms and approaches. In order to

scale ABM to massive simulation sizes, architectures

and software able to exploit high-performance com-

puting (HPC) are required. Specialist distributed

processing remains a popular choice for such com-

putation [12–14], however the GPU has received a

vast amount of interest from the biological and phys-

ical sciences [15–19]. This can be attributed to cost

effective performance gains achieved through

exploiting its high throughput design (Figure 1).

Technically, the GPU not only exceeds the transistor

count of modern CPUs, with a significantly higher

portion of transistors available for data processing,

but memory bandwidth outperforms system

memory by a factor of 10 [20]. Emerging architec-

tures such as the Cell [21] and Larrabee [22] share

similar design principles with the GPU and likewise

offer enormous potential for ABM, providing soft-

ware is available to exploit it.

This article describes the application of the flexi-

ble large-scale agent modelling environment frame-

work for the GPU (FLAME GPU) [23, 24] to

cellular level systems biology simulation. FLAME is

an ABM environment designed around a formal

modelling technique, orientated towards highly effi-

cient parallel simulation. Previously it has been

extensively developed for use with task parallel

cluster architectures [25, 26]. This article describes

the implementation on GPU hardware which

offers the following advantages:

(i) Simulation of cellular models can be massively

accelerated using the parallel GPU architecture

to achieve performance beyond that of

CPU-based frameworks and similar to that of

execution on expensive clusters or grids.

(ii) The use of a continuous space environment

allows a realistic simulation of cellular tissue

growth and resulting tissue formation.

(iii) Model data can be saved and analysed post sim-

ulation, or as data is persistent within GPU

memory can be used for real-time visual simu-

lation aiding face-validation through compari-

son with in-vitro experiments.

Within this article, a review of ABM is first pre-

sented where it is contrasted with equation-based

modelling approaches. Agent specification and

formal modelling techniques for ABM are then dis-

cussed and compared with more common Object

Orientated (OO) techniques. The FLAME GPU

modelling and simulation process are then described,

as are the details of implementation on GPU hard-

ware. The limitations of FLAME GPU and the more

general limitations of the GPU are discussed, as well

as the implications for cellular simulation. A tissue

growth modelling example from literature [27] is

introduced as is a discussion of techniques for solving

intercellular ‘force’ resolution. Using the exemplar

skin tissue growth model, the performance of

FLAME GPU is evaluated and finally, our plans for

future work are presented.

AGENT-VERSUS
EQUATION-BASEDMODELLING
Equation-based models (EBMs) are extensively used

to model system-level behaviour in biology. They

often represent observable time varying quantities,

such as population size or concentrations of a partic-

ular entity. Although some can predict systems level

behaviour based on assumed lower level activities

(e.g. change in population of a species over time,

based on fixed birth and death rates), some are

simply descriptive in that they are designed to

match real-world observations. Despite some advan-

tages of this type of simulation (e.g. faster run time

and the availability of established libraries dedicated
Figure 1: Peak Performance of NVIDIA GPU
Hardware (grey) versus Intel CPU Hardware (black).

Agent-based simulation with FLAME for the GPU 335
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


to the numerical integration of equations), EBM

offers little insight into the micro-level behaviour

representing the interactions of the individuals

within the system. Where global observations are

made, these represent average values and assume

homogeneity and perfect mixing of system compo-

nents. As a result, important low level details of the

system may be simply ignored.

By contrast, ABM utilises a bottom-up approach

to simulation that does not explicitly attempt to

model aggregate characteristics of a system [1, 28].

As with multi-agent systems (MAS), ABMs can be

described as a ‘system of interacting parts’ (the nota-

ble difference being that agents (or individuals)

within ABM are simulated as autonomous individ-

uals where as MAS may use a more generic agent

representation). Typically an ABM consists of a

number of agents, an environment and a set of

rules governing agent behaviour. Agents themselves

are self-contained entities consisting of states and a

set of behavioural rules. Agents may represent dis-

crete spatial entities such as molecules or cells, in

which case they may reside within a continuous or

discrete spatial environment. In either case, agents

may interact directly or through an environment

where they compete for, or generate, resources. By

specifying rules at a local individual level, complex

‘emergent’ system behaviour can be observed

through the result of agent interactions. The specifi-

cation of individual rules also makes ABM inherently

capable of representing heterogeneity, as each agent

can possess its own individual attributes and beha-

viours. Such system-wide diversity is important, as in

many systems agents cannot be expressed as simple

uniform entities. This is particularly true in cellular

level systems, where cells in differing states (e.g. dif-

ferent cell-cycle phases) or subject to different micro-

environments (e.g. local stress of biochemical

gradients), may perform entirely different behaviours

or exhibit differing phenotypes.

AGENTMODEL SPECIFICATION
Object Orientated Programming (OOP) is widely

adopted as the most common paradigm for ABM

frameworks [7, 8, 29, 30]. OOP offers a natural

and simple technique for modelling which is easily

understood by software engineers who are familiar

with OO design. Agent objects are represented as

static objects which control their state and execu-

tion and communicate through message passing.

The majority of popular ABM frameworks are

based on OO design principles, some even use con-

cepts such as UML for agent and system specification

[31–33]. Of these frameworks, most are accessible

through an application programming interface (or

API) and application layer. The API provides a

tool for building and describing models, whilst the

application layer implements common routines such

as agent communication and scheduling of agent

behaviour and interactions.

By contrast, FLAME GPU adopts the use of a

formal technique for model specification called the

X-machine [34, 35]. Formal techniques are advanta-

geous as they provide a technique not only for spec-

ification but also validation using state machine

analysis and testing algorithms [36]. Whilst formal

specification is useful in the generation of system

implementations, automatic validation (and verifica-

tion) [37] is invaluable as it allows testing and error

checking of systems. In the case of high integrity or

mission critical systems [38], the guarantee of relia-

bility and correct behaviour is not only advanta-

geous, but essential. More specifically the

advantageous of formal specification techniques can

be described as [25]:

� The use of a unified and open format promotes

better collaboration and understanding.

� The use of formal techniques for validation and

verification of models.

� Modellers describe agents and behaviour using a

simple formal concept which avoids having to

map algorithms to complex parallel architectures.

Many formal techniques appropriate for multi-

agent systems are based around automaton- and

state-based representation of agents. For example,

cellular automaton (CA) can be described as a grid

of interacting finite-state machines (FSMs). This pro-

vides a powerful technique for simple models, as

states can be specified and rules defined as transition

functions which describe the agents control flow

from one state to another. Whilst feasible for

simple CA, the lack of any internal memory leads

to a combinatorial explosion of stages when consid-

ering even simple communication. As a result of this,

it is no surprise that in order to represent more com-

plex non-trivial systems, a more powerful represen-

tation is required.

Aside from state-based formal techniques, pro-

cess algebras such as Z [39], p-calculus [40] and

336 Richmond et al.
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


communicating sequential processes [41] have also

been used for specification of concurrent systems

and sequential processes. These algebraic techniques

are particularly useful at modelling subcellular behav-

iour, particularly intracellular pathway signalling

[42]. However, they tend to become extremely

complex when applied to either continuous or dis-

crete time ABM [43], with the generation of simu-

lation code being far from straightforward [44].

The X-Machine is an extension to FSMs that is

based around automaton and state based representa-

tion of agents. The inclusion of internal memory

overcomes the exponential growth of FSM systems

by allowing the number of states to be greatly

reduced. This provides a powerful technique for

computational modelling, as states can be specified

and rules defined as transition functions controlling

flow from one state to another. As a result the

X-machine has been successfully applied to the

formal verification of swarms [38], and as a technique

to computationally model biological systems

[45–47]. With respect to biological cell modelling,

an X-machine can be used to directly model a cel-

lular agent as a black box system. The formal defi-

nition of a stream X-machine (SXM) (a particular

class of X-machine where the input and output are

streams of symbols) is defined as a 8-tuple

(
P

, �,Q,M, �,F, q0,m0) [48], where
P

and � is

the input and output finite alphabet, respectively;

Q is the finite set of states; M is the (possibly) infinite

set called memory; � is the type of the machine

SXM, a finite set of partial functions ø that map an

input and a memory state to an output and a new

memory state, ø:
P
�M!��M; F is the next

state partial function that given a state and a function

from the type �, provides the next state, F:

Q��!Q (F is often described as a transition

state diagram or transition funtion); q0 and m0 are

the initial state and memory, respectively.

Within FLAME GPU, the communicating stream

X-machine (CSXM) [49], a variant of the

X-machine which adds a communication mecha-

nism between agents, is used to allow inter-agent

interactions. Agents communicate by iterating

input messages (
P

), output from neighbouring

agents (�) during the transition function (F) which

specifies movement between states. Rather than

adhere strictly to the exact formal definition of a

CSXM, FLAME GPU replaces fixed sized commu-

nication matrices with variable length message lists.

This allows the possibility of dynamic population

sizes during the simulation process (an essential fea-

ture in models that represent an expanding cell

population).

Specifying an X-machine agent in FLAME GPU

can be achieved through the use of extensible

mark-up language (XML) model files. An extendible

XML schema [23] is used within FLAME to ensure

the correct syntax of describing an X-machine

model. The resulting XML syntax is known as the

X-machine mark-up language, or XMML. Figure 2

demonstrates a simplified example of a cell specified

using an XMML model. The memory XML ele-

ment contains variables representing the agent’s

internal memory (M). States (Q) are listed within

the states XML element, with an initialState element

being used to define q0. The initial set of memory

(m0), or XML input state (Figure 3, left), is described

Figure 2: An example of cell expressed as an X-machine agent. Left shows the XMML model definition and right
shows an example of an initial memory configuration file.

Agent-based simulation with FLAME for the GPU 337
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


in a corresponding XML file which contains a list of

agents and with values for each agent memory vari-

able defined within the model specification. The

definition of transition functions and the layering

of function order (layers) are also included within

the XMML definition however these are discussed

in the following section.

AGENTBEHAVIOUR AND
SIMULATION
Function specification in common OO frameworks

and APIs [7, 8, 29, 30] is achieved through the use of

functions or actions within an agent object. Similarly

within FLAME GPU, the transition between states

of the X-machine agent (F in the formal definition)

is used to specify agent behaviour. The transition

function (or agent function) is able to modify an

agent’s internal memory, as well as process input

and output in the form of messages. Figure 3

(right) demonstrates the definition of two agent

functions. The first of these is used to output a

location message which is defined within the

XMML model file as a simple list of memory vari-

ables. The second of these defines a function

(migrate) which inputs the list of location messages.

The function code is defined as scripted C code

(Figure 3, right) with a simple example of the

cell-cycle function defined below.

Although state-based formalisms have been pre-

viously been used for discrete event simulation [13],

most agent based systems (including the FLAME

GPU framework) require the ability to perform

numerical integration, which by definition, requires

execution of agent functions over a number of dis-

crete time steps. Within FLAME GPU, the order of

which agent functions are executed is determined

through the specification of a number of function

layers (Figure 3, within the <layers> element).

Each function layer can contain any number of

agent functions and functions within the same layer

are assumed to have no dependencies as they may be

processed simultaneously. Current GPU hardware

supports only Single Program Multiple Data

Figure 3: An example of the definition of XMML agent function definitions with corresponding function code
script. Left shows the XMML function definition including the processing order layer definition. Right shows an
example of a simple function script performing message iteration using the FLAME GPUmessage functions.

338 Richmond et al.
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


execution which forces functions in the same layer to

be processed serially, however the next generation of

NVIDIA hardware (Fermi) will allow function in the

same layer to be processed simultaneously through

Multiple Program Multiple Data execution support

[50]. Functions which have dependencies are speci-

fied in additional layers. For example, the two func-

tions in Figure 3 (left) have a dependency on the

location message. It is important that the first func-

tion completes before the second attempts to read

the list of location messages, and therefore the func-

tions are defined using two layers.

Unlike OO methods, FLAME GPU’s C based

API is dynamically generated for each XMML

model. In order to achieve this, templates are used

to generate compliable simulation code, including

agent and message specific API functions and data

structures. Figure 4 shows the process of generating

a FLAME GPU simulation. XMML model files can

either be processed though a compliant extensible

stylesheet language transformation (XSLT) processor.

Two XMML schemas are used to ensure correct

syntax of the model file. The first of these schemas

(the base schema) validates the syntax of a base

X-machine model, the second uses OO style exten-

sion of the base model to add any GPU specific

model parameters. After generating simulation

code, the simulation program must be compiled. If

the visualisation template is used, then the resulting

simulation program allows the model to be visualised

in real-time. Alternatively the simulation can gener-

ate XML output for any number of simulation steps.

ACCELERATING FLAMEWITH
THEGPU
Modelling paradigms based on the interaction of dis-

crete spaced entities are relatively trivial to simulate

on GPU hardware [51–53]. Homogeneous agents,

tightly packed into regular discrete environments

can easily be stored in 2D data structures (such as

textures) and simulated using a regular grid of parallel

processes (or threads) for each agent.

Communication between the discrete partitions is

easily achieved using a gather operation over a

fixed radius, spatially aware caching, such as that

offered by the built in texture cache can provide

extremely high performance.

Mobile discrete simulations consisting of agents

navigating a grid like environment are less

well-suited to a GPU implementation as they are

traditionally implemented in sequential environ-

ments. Parallel implementations of discrete mobile

systems on the GPU must explicitly handle collision

conditions which result from agents simultaneously

moving to the same discrete location. D’Souza [54]

presents a novel technique for achieving this that uses

a multi-pass priority scheme to iteratively solve all

potential discrete movement collision possibilities.

Within the continuous-based environment of

FLAME GPU, discrete collision evaluation is not

required as agents are not bound to a grid like envi-

ronment. Likewise, collision detection between

agents in continuous space is not explicitly required.

Technically, messages allow any form of

Figure 4: The FLAME GPUmodelling process. Models are translated from an XMML file using a template proces-
sor which produces simulation code. The simulation program includes routines for real-time visualisation if the
appropriate XSLT template is included.

Agent-based simulation with FLAME for the GPU 339
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


communication to take place between agents and it

is the agent functions which determine behaviour

through the processing messages information. For

example, within the cell modelling example, used

later in this paper, agents migrate independently of

potential physical agent collisions and use a subse-

quent force resolution process to solve physical cell

overlaps.

The processing of messages (input) within agent

functions is achieved through iteration using the

optimised message iteration functions shown in the

scripting example in Figure 3 (right). These can be

customised for each message type within the XMML

model for either brute force or spatially partitioned

local message iteration. Brute-force message com-

munication is implemented in FLAME for the

GPU by using a tiling-based-technique inspired by

N-body gravitational field summation [55]. A block

of threads, each representing an agent, loads the

batches of tiled messages into per multiprocessor

shared memory. Agents are then able to serialise

some message reads with minimal communication

overhead achieving near optimal performance of

the GPU hardware. Whilst O(n2) communication

is extremely efficient, many agent systems including,

those representing cellular systems, communicate

using a small interaction radius (a restricted distance

within which agents are able to communicate or

mutually influence one anothers’ behaviour). In

this case, a common spatial partitioning technique

is used, which is inspired by interacting particle

systems [56]. The algorithm has been implemented

in a number of interacting systems including

swarm-based systems on both the GPU [57, 58]

and the PS3 [59]. It consists of partitioning message

space into a regular grid based on the interaction

range of the particle or message. Messages are

sorted using a parallel sort algorithm [60] and a

matrix containing the start and end index position

of any messages within the sorted list is built by using

a scatter kernel (Figure 5). This in turn is used to

iterate through messages in all 27 neighbouring par-

titions to that in which an agent is located. By exam-

ining all messages within neighbouring partitions,

every message within the defined radius is considered

for communication. As agents in different positions

load a different number of messages from differing

locations, shared memory cannot be used to acceler-

ate the message reading. Instead the texture cache is

used to exploit the spatial coherence of the partition-

ing algorithm. The efficiency of the texture cache

depends on the ordering of the agents and hence

the spatial partitioning algorithm used. Within

FLAME GPU a relatively simple location hash is

used, however, it has been suggested [19] that the

Hilbert space filling curve [61] is able to increase the

cache hit rate and hence performance.

ADDRESSINGTHE LIMITATIONS
OF GPU SIMULATION
The major weakness of performing simulation on the

GPU resides within the general difficulty of data

parallel programming. In the past, GPGPU program-

ming was only available through the mapping of

algorithms into textures which could be processed

Figure 5: An example of a 2D partitioned message
space containing sorted messages. The matrix below
holds the first and last message in the partition which
is used to iterate messages. For example an agent in
partition space 10 iterates 9 message partitions (5^7,
9^11, 13^15) to ensure all messages (5^8) within the
potential message range are examined.

340 Richmond et al.
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


within the numerous programmable stages of the

graphics pipeline through graphics APIs.

Translational techniques partly solve this issue by

mapping the concept of a Single Instruction

Multiple Data stream kernel, to a high level GPU

shading language [62–64]. More recently, however,

hardware vendors have embraced GPGPU by pro-

viding low-level driver supported instruction sets

with high-level language support. NVIDIA compute

unified device architecture (CUDA) [20] has

emerged as the most prominent of these, with the

concept of data parallel execution within a grid of

thread blocks forming the foundations for OpenCL

[65], the recent open standard for parallel program-

ming of heterogeneous systems.

Despite the drive towards higher level language

support for GPU computing, achieving high perfor-

mance still requires detailed knowledge of the

underlying hardware and memory access patterns.

Within FLAME GPU specialist knowledge is

abstracted through the use of the template system

allowing all GPU specific (CUDA) code to be auto-

matically generated. The automatically generated

code includes efficient data access and storage tech-

niques [66], which maximise memory coalescing,

reducing the number of memory read operations

which must be issued to load agent and message

data within agent functions. Likewise, efficient tech-

niques are used to ensure lists of data within FLAME

remain dense, which enables simple mapping to the

underlying hardware. There are many occasions in

FLAME simulations where dense lists of agent data

become sparse, either through agent deaths, the

introduction of new agents into empty lists, or the

movement of agents from one state list to another. In

order for the GPU to process sparse lists of data effi-

ciently, they must be compacted. This is achieved

through the use of a highly optimised parallel

prefix sum operation [67] in which every element

in the resulting lists is obtained from the sum of all

previous elements. A scatter kernel can then move

each active agent into a compacted list by changing

its location to the position specified by the result of

the scan.

The more general limitations of the GPU for

simulating cellular systems, such as difficulty in

including stochasticity and complex behaviour, are

also addressed with FLAME GPU. A GPU imple-

mentation of GNUs random 48 algorithm [68] is

included and can be used within agent function

code to provide real-time random number

generation. Likewise, FLAME GPU stores agents

within state lists to ensure that agent functions are

only applied to the correct subset of the agent pop-

ulation in the correct state. This minimises diver-

gence across the agent population allowing greater

performance even when agent functions become

complex. Despite this, cellular simulation on the

GPU in FLAME or otherwise does have specific

limitations resulting from the hardware itself. GPU

memory is a limited resource—even the GPGPU

specific Tesla GPUs are limited to 4 GB. Behaviour

complexity is also limited by the number of registers

per multiprocessor. Once registers are filled, storage

spills over to local memory, causing massive perfor-

mance degradation. GPU hardware in the past has

scaled well, suggesting that hardware specific limita-

tions may be less of a problem in the future, how-

ever, for now extremely large or complex

simulations may not be suitable for execution on a

single piece of GPU hardware.

INTERCELLULARCELLULAR
FORCERESOLUTION INA
KERTINOCYTE EXAMPLE
The Keratinocyte (cell) model [27] is a model of the

in vitro behaviour of skin epithelial cells, based on

published behaviour, or direct observation of this

cell type in vitro. It has been developed as part of

the Epitheliome project which aims to develop pre-

dictive ABMs of both skin and bladder [69] epithelial

tissue. Ultimately, the goal is to use these models to

help understand how cells interact during normal

tissue growth, and to understand the potential

sources of dysregulation in pathology (e.g. malignant

development, compromised wound healing). The

model includes behaviour representing traverse of

the cell cycle, including cell growth and division

(proliferative behaviour), leading to the addition of

agents to the model. Simulation of differentiation

describes how cells change type, from keratinocyte

stem cells capable of infinite divisions, through a

number of intermediate stages to fully differentiated

superficial cells that cannot divide and are ultimately

lost from the tissue surface. The removal of dead

agents (apoptosis) from the simulation occurs and

simulation of migration allows cells to actively

move within a continuous space environment

(Figure 6). Various hypotheses relating to the impor-

tance of specific biological rules have been tested

Agent-based simulation with FLAME for the GPU 341
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


with in-virtuo experimentation using the model,

which have later also been tested in vitro [27, 69, 70].

Within FLAME GPU, the physical form of a cell

within the keratinocyte model can be easily repre-

sented by incompressible spheres. As the simulation

proceeds in step-wise discrete time, there is a high

likelihood that the simulation will introduce some

physical overlap of the cell objects. This is particu-

larly true when simulating tissue cell colonies which

form tight bonds and demonstrate a large amount of

cell division. In order to correct any physical over-

laps, a repulsive force can be applied to separate

overlapping cells, therefore maintaining the physical

integrity of the simulation. This repulsive force can

be applied to cells in the same way as any other inter

cellular forces, which may be the result of cell

growth, motility, inter cell and substrate bonds or

forces generated by the internal cytoskeleton.

Resolving intercellular forces of any kind using

discrete time steps is extremely difficult to achieve

within a single simulation step or agent function.

However, there are a number of techniques which

can be applied to agent simulations which aim to

iteratively perform force resolution in order to

achieve a stable state of cells (i.e. to reach a state

where cells have trivial movement for additional

force resolution steps). The first of these is to use a

sufficiently large number of agent functions for force

resolution within a single simulation step. For exam-

ple, within FLAME GPU a large number of similar

functions can be expressed for repeatedly resolving

forces. Whilst this technique is suitable for perhaps a

small fixed number of force resolution steps, larger

numbers of resolution steps introduce large amounts

of code repetition. Additionally, as the number of

resolution steps required is variable between simula-

tion steps (as different steps introduce greater

amounts of force depending on the behaviour per-

formed) using a fixed number of steps to ensure

accurate resolution will in most cases perform more

computation than is required. To avoid this, a recur-

sive force resolution process can be used which iter-

ates the force resolution behaviour until the

population reaches a stable state and then stops.

Within previous cell-based agent simulations, this

has typically been achieved using external, sequential

physical force solvers [27, 69, 70]. Using this tech-

nique, an agent program, such as FLAME, performs

a simulation step and then outputs all agent informa-

tion into some common format. This allows the

Figure 6: An example of the simulation flow of the keratinocyte modelling example. Arrows represent the resolu-
tion state of forces within the simulation (resolved or unresolved). After the processing of the normal cell functions,
agents may perform any number of recursive force resolution steps.

342 Richmond et al.
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


external solver to read the agent information and

iteratively perform force resolution before output-

ting the agent data back into the agent simulation

environment ready for the next simulation step. The

disadvantage of this technique is that external solvers

are often defined only for single CPU architectures

introducing a large bottleneck into simulation

performance.

In order to ensure parallel force resolution, with-

out a fixed number of resolution steps, the concept

of a global agent function has been introduced to

FLAME GPU to achieve recursive behaviour. A

global function simply performs some conditional

evaluation on each agent at the beginning of an

agent function which can be used to determine if

the agent has moved less than some small amount

(indicating it has reached a stable state). A global

parallel reduction algorithm [71] can then be used

to count the number of agents which meet the

global condition. If all agents evaluate the global

condition as true, then the population is ascertained

to be in a stable state and a normal simulation step

(i.e. a step including any defined cell functions such

as cycling, division and migration) can take place,

incrementing the simulation by the defined discrete

time step. If the global condition is not evaluated as

true by all agents, then a non-linear time step is pro-

cessed. This non-linear step performs only the force

resolution agent functions and as a result does not

advance the simulation by the discrete time interval.

A non-linear simulation step can be repeated any

number of times, up to a specified fixed limit,

ensuring that any un-resolvable oscillating move-

ment does not prevent the simulation from continu-

ing. Figure 6 demonstrates this technique for the

keratinocyte tissue colony simulation.

PERFORMANCE ENHANCEMENT
OF GPU SIMULATIONS
The performance benefit of mapping simulations to

the GPU is well documented [15–19]. In the case of

simulating CA and discrete agent systems, speedups

of over 100 times that of a sequential simulation

environment are fairly common, however, the

exact performance is dependant on the model spec-

ification itself. In order to evaluate FLAME GPU for

the purposes of cellular simulation, the keratinocyte

tissue model gives a good indication of the expected

performance benefit. Figure 7 shows the speedup of

performing the simulation using both brute force and

limited range message iteration within the agent

functions. Each test simulation is based upon an ini-

tial configuration state consisting of randomly dis-

tributed cells at a particular density. The speedup is

calculated by considering the relative speed increase

of the FLAME GPU iteration time in comparison

with FLAME iteration time on the CPU (for the

same initial configuration). Simulation steps utilising

brute force computation were accelerated by an

average of 250 times that of a comparable FLAME

simulation running on a single CPU. Where spatial

partitioning on the GPU was used to reduce the

computation overhead of agent communication,

Figure 7: Relative performance of the keratinocyte model using both brute force and the spatially partitioned
message iteration functions within FLAME GPU.

Agent-based simulation with FLAME for the GPU 343
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


simulation time was reduced significantly. A single

simulation step with over 130 000 agents which was

previously simulated on the CPU for hours took

only seconds.

To contrast the performance of FLAME GPUs

limited range interactions with the performance of

FLAME running on a HPC grid architecture, a

second benchmarking model of a million simple

agents, performing only movement functionality,

has been compared. The model consists of two

agent functions: the first outputs agent locations

and the second iterates these to determine a migra-

tion movement for each agent. On the grid, agents

are spatially distributed across nodes with messages

spanning numerous nodes communicated using the

message passing interface (MPI). The simulation per-

formance of the model on a HPC grid scales well as

the number of processors is increased, however, any

more than 100 processing cores are unable to

decrease performance time below 6 s due to

memory bandwidth restrictions. By contrast, the

same simulation running in FLAME GPU is able

to perform the same simulation in less than a quarter

of a second.

In the case of a tissue wound model (where a

pre-existing high density agent population is subject

to ‘wounding’ by removal of agents representing a

300 mm wide scratch, as shown in Figure 8) which

reached a total stable population of over 2500 agents,

simulation took no longer than half a second for

both simulation and intercellular force resolution

[23]. Force resolution was achieved by testing an

agent’s movement to ensure that it had moved

<0.25 mm in a maximum of 200 resolution steps.

Figure 9 shows the performance of this simulation,

which took roughly 1500 iterations. The timing of

the non-linear recursive force resolution steps is

shown separately from the timing of normal agent

behaviour and is measured in centiseconds (10�2) for

clarity. Whilst it is possible to visualise only the linear

time steps at 2–3 frames per second (FPS), inclusion

of the force resolution steps ensures that the simula-

tion remains real-time at over 60FPS throughout. In

total, the simulation which previously took several

hours using a single CPU core, could easily be

Figure 9: Progressive timing of normal agent functions and the recursive force resolution steps during a scratch
would simulation of keratinocyte cells in FLAME GPU.

Figure 8: An example of an initial configuration of a
keratinocyte scratch wound in FLAME GPU.

344 Richmond et al.
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


processed on the GPU in <2 min (for additional

evaluation of the performance of this specific scratch

wound simulation within FLAME GPU the reader is

directed to [23]). Simple face-validation using the

real-time visualisation technique can be used to

ensure that the specified agent behaviour does not

result in any obvious abnormalities in tissue forma-

tion. Comparison of the simulation with the

non-parallel CPU simulation can also be visually

validated before a more in-depth direct agent vari-

able comparison can be performed between the two

simulations offline.

DISCUSSIONAND FUTUREWORK
Improvement in performance offered by cell simu-

lation within FLAME GPU makes a significant leap

forward with respect to the fast development and

checking of such models. Likewise, the use of the

GPU has allowed real-time visualisation to be

coupled with simulation steps, which offers the

potential for real-time interaction (or steering)

during the simulation process. Aside from perfor-

mance related advantages, FLAME GPU has clearly

demonstrated a step forward in the use of formal

techniques for ABM. The ability to specify models

which can be automatically mapped to a complex

architecture allows modellers to concentrate on

model specification without having to understand

the underlying hardware architecture.

In the future, it is expected that FLAME GPU

will be extended in a number of ways. The first area

to be improved will be the detail of cell models

through the use of hierarchical modelling. The scal-

ing up and down of the current middle-out cellular

focus will be achievable through future hierarchical

X-machine models. This is achievable by considering

any agent function to be represented by another

X-machine model. Such an approach will allow

modelling of lower level physical properties of the

cell, including more realistic cell communication

processes (e.g. cell contact mediated or ‘juxtacrine’

signalling), as well as mechanotransduction (i.e. how

cells translate mechanical forces into biochemical sig-

nals that may results in gene transcription and alter

cell phenotype).

Distributing agents has already proved highly suc-

cessful within cluster based HPC environments.

However, future work will likely consider the use

of low cost GRID technology. Middleware applica-

tions such as BOINC [72] offer excellent process

scheduling functionality which could be exploited

within low cost existing local networks. The use of

messaging and formal description of models places no

limit on the types of nodes which may be used. This

can lead to a truly heterogeneous ABM platform

with a mix of nodes using CPU and GPU processors.

Key Points

� FLAME GPU is a modelling environment allowing
high-performance agent-based modelling on computer graphics
card hardware.

� Discrete time steps are used to advance the simulation.
� Modellers do not require specialist knowledge of the underlying

architecture used for simulation, as models are designed using
formal specification techniques.

� Efficient algorithms for inter-agent communication andbirth and
death allocation ensure high simulation performance.

� The system is based on simple XML syntax which is easily
extendable.

� Performance of a complex cellular tissue simulation has been
increased drastically.

FUNDING
Paul Richmond is funded through an EPSRC

Doctoral Prize Fellowship and Dawn Walker is

funded through an RCUK Fellowship.

References
1. Noble D. The rise of computational biology. Nat Rev Mol

Cell Biol 2002;3(6):459–63.

2. Sanbonmatsu KY, Tung CS. High performance computing
in biology: multimillion atom simulations of nanoscale sys-
tems. J Struct Biol 2007;157:470–80.

3. Burrage K, Hood L, Ragan M. Advanced computing for
systems biology. Brief Bioinform 2006;7:390–8.

4. Walker DC, Southgate J. The virtual cell – a candidate
co-ordinator for ‘middle-out’ modelling of biological sys-
tems. Brief Bioinform 2009;10(4):450–61.

5. Gaffney EA, Maini PK, Sherratt JA, et al. The mathematical
modelling of cell kinetics in corneal epithelial wound heal-
ing. JTheoret Biol 1999;197:15–40.

6. Johnston M, Edwards C, Bodmer W, et al. Mathematical
modeling of cell population dynamics in the colonic crypt
and in colorectal cancer. Proc Natl Acad Sci USA 2006;
104(10):4008–13.

7. Luke S, Cioffi-Revilla C, Panait L, et al. MASON: a
multiagent simulation environment. Simulation 2005;81(7):
517–27.

8. Minar N, Burkhart R, Langton C, et al. The Swarm simula-
tion system: a toolkit for building multi-agent simulations.
Working Paper 96-06-042. Santa Fe Institute, Santa Fe,
1996.

9. Quinn MJ, Metoyer RA, Hunter-zaworski K. Parallel imple-
mentation of the Social ForcesModel, 2003.

Agent-based simulation with FLAME for the GPU 345
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


10. Geer D. Industry trends: chip makers turn to multicore
processors. Computer 2005;38(5):11–3.

11. Moore GE. Cramming more components onto integrated
circuits. Electronics 1965;38(8):114–7.

12. Theodoropoulos G, Logan B. Distributed simulation of
agent-based systems. In: Topping BHV (ed). In:
Developments in Computational Mechanics with High Performance
Computing: Proceedings of theThird Euro-conference on Parallel and
Distributed Computing for Computational Mechanics. Weimar:
Civil-Comp Press, 1999;147–54.

13. Lees M, Logan B, Theodoropoulos G. Distributed simula-
tion of agent-based systems with HLA. ACM Trans Model
Comput Simul 2007;17(3):11.

14. Uhrmacher AM, Gugler K. Distributed, parallel simulation
of multiple, deliberative agents. In: PADS ’00: Proceedings of
the FourteenthWorkshop on Parallel and Distributed Simulation.
Washington, DC: IEEE Computer Society, 2000;101–8.

15. Ackermann J, Baecher P, Franzel T, et al. Massively-parallel
simulation of biochemical systems. In: ProceedingsofMassively
Parallel Computational Biology on GPUs, Jahrestagung der
Gesellschaft fu« r Informatik e.V,. Workshop proceedings.
Lübeck, Germany, 2009.

16. Phillips JC, Zheng G, Kumar S, et al. NAMD: biomolecular
simulation on thousands of processors. In: Supercomputing’02:
Proceedings of the 2002ACM/IEEEConferenceonSupercomputing.
Los Alamitos, CA: IEEE Computer Society Press, 2002;
1–18.

17. Kupka S. Molecular dynamics on graphics accelerators.
University of Vienna: Web Proceedings of CESCG, 2006.

18. Liua W, Schmidt B, Vossa G, et al. Accelerating molecular
dynamics simulations using Graphics Processing Units with
CUDA. Comp Phys Commun 2008;179:634–41.

19. Anderson JA, Lorenz CD, Travesset A. General purpose
molecular dynamics simulations fully implemented on gra-
phics processing units. JComputPhys 2008;227(10):5342–59.

20. NVIDIA. NVIDIA CUDA compute unified device archi-
tecture programming guide. NVIDIA 2007.

21. Williams S, Shalf J, Oliker L, et al. The potential of the cell
processor for scientific computing. In: CF ’06: Proceedings of
the 3rd Conference on Computing Frontiers. New York, NY:
ACM, 2006;9–20.

22. Seiler L, Carmean D, Sprangle E, et al. Larrabee: A many-
core x86 Architecture for visual computing. IEEE Micro
2009;29(1):10–21.

23. Richmond P, Coakley S, Romano D. Cellular level agent
based modelling on the graphics processing unit. In:
Proceedings of theWorkshop on High Performance Systems Biology
(HiBi09). CoSBi, Trento, Italy: IEEE Computer Society,
2009;43–50.

24. Richmond P, Coakley S, Romano D. A high performance
agent based modelling framework on graphics card hard-
ware with CUDA. In: Proceedings of Eighth International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS) 2009, Budapest, Hungary.

25. Coakley S, Smallwood R, Holcombe M. Using
X-machines as a formal basis for describing agents
in agent-based modelling. In: Proceedings of 2006 Spring
Simulation Multiconference. Huntsville, AL: Workshop pro-
ceedings, 2006;33–40.

26. Adra SF, Coakley S, Kiran M, et al. An Agent-based Software
Platform for Modelling Systems Biology. University of Sheffield

Epitheliome Project: Technical Report: University of
Sheffield, 2008.

27. Sun T, McMinn P, Coakley S, et al. An integrated systems
biology approach to understanding the rules of Keratinocyte
colony formation. J Royal Soc 2007;4:1077–92.

28. Dyke V, Savit R, Riolo RL. Agent-Based Modeling vs
Equation-Based Modeling: A Case Study and Users’ Guide 1998.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi¼10.1.1
.34.1164 (4 December 2009, date last accessed).

29. Iglesias CA, Garijo M, Centeno-González J. A survey of
agent-oriented methodologies. In: ATAL ’98: Proceedings of
the Fifth International Workshop on Intelligent Agents V, Agent
Theories, Architectures, and Languages. London, UK: Springer-
Verlag, 1999;317–30.

30. North MJ, Howe TR, Collier NT, et al. Repast Simphony
Runtime System. In: Proceedings of theAgent 2005Conferenceon
Generative Social Processes, Models, and Mechanisms. ANL/
DIS-06-1, co- sponsored by Argonne National Laboratory
and The University of Chicago, 2005.

31. Odell J, Parunak H, Bauer B. Extending UML for Agents,
2000. http://citeseer.comp.nus.edu.sg/odell00extending
.html (4 December 2009, date last accessed).

32. Bauer B, Müller JP, Odell J. Agent UML: A formalism for
specifying multiagent interaction. In: Ciancarini P,
Wooldridge M (eds). Agent-oriented Software Engineering.
Berlin: Springer, 2001;91–103.

33. Page B, Knaaka N, Kruse S. A discrete event simulation
framework for agent-based modelling of logistic systems.
In: Informatik 2007 Informatik trifft Logistik, Proc. 37.
Jahrestagung der Gesellschaft für Informatik. Bremen,
2007;397–404.

34. Eilenberg S. Automata, Languages, andMachines. Orlando, FL:
Academic Press Inc, 1974.

35. Holcombe M. X-machines as a basis for dynamic system
specification. Software Eng J 1988;3(2):69–76.

36. Kiran M, Coakley S, Walkinshaw N, et al. Validation and
discovery from computational biology models. Biosystems
2008;93(1^2):141–50.

37. Balci O. Verification validation and accreditation of simula-
tion models. In: WSC ’97: Proceedings of the 29th Conference on
Winter Simulation. Washington, DC: IEEE Computer
Society, 1997;135–41.

38. Hinchey MG, Rouff CA, Rash JL, et al. Requirements
of an integrated formal method for intelligent swarms. In:
FMICS’05: Proceedings of the 10th International Workshop on
FormalMethods for Industrial Critical Systems. New York, NY:
ACM, 2005;125–33.

39. Abrial JR, Schuman S, Meyer B. A specification language.
In: Macnaghten AM, McKeag RM (eds). OntheConstruction
of Programs. Cambridge University Press, 1980;343–410.

40. Milner R, Parrow J, Walker D. ACalculus ofMobile Processes,
Parts I and II; 1989. -86. http://citeseerx.ist.psu.edu/viewdoc
/summary?doi¼ 10.1.1.35.8193
(4 December 2009, date last accessed).

41. Hoare CAR. Communicating sequential processes.
CommunACM 1978;21(8):666–77.

42. Regev A, Silverman W, Shapiro E. Representation and
simulation of biochemical processes using the pi-calculus
process algebra. Pac Symp Biocomput 2001;459–70.
Conference Proceedings of Pacific Symposium of
Biocomputing, Hawaii.

346 Richmond et al.
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


43. d’Inverno M, Luck M. Formal agent development: frame-
work to system. In: In Formal Approaches to Agent-based
Systems: First International Workshop, FAABS 2000. London:
Springer-Verlag, 2000;133–47.

44. Rouff C, Truszkowski W, Rash J, et al. A Survey of Formal
Methods for Intelligent Swarms. Greenbelt, MD: NASA
Goddard Space Flight Center, 2005.

45. Eleftherakis G, Kefalas P, Sotiriadou A, etal. Modeling biol-
ogy inspired reactive agents using X-machines. In:
Proceedings of the International Conference on Computational
Intelligence (ICCI04), Istanbul. Istanbul: Workshop proceed-
ings, 2004.

46. Gheorghe M. Molecular X-machines. Department of
Computer Science, University of Sheffield, 2005.

47. Kefalas P, Stamatopoulou I, Gheorghe M. A formal
modelling framework for developing multi-agent systems
with dynamic structure and behaviour. In: Multi-Agent
Systems and Applications IV. Springer: Berlin/Heidelberg,
2005;122–31.

48. Laycock GT. The Theory and Practice of Specification Based
Software Testing. Department of Computer Science,
University of Sheffield, 1993.

49. Balanescu T, Cowling AJ, Georgescu H, et al.
Communicating stream X-machines systems are no more
than X-machines. j-jucs 1999;5(9):494–507.

50. NVIDIA. NVIDIA’s Next Generation CUDA Compute
Architecture. NVIDIA Technical Report: NVIDIA, 2009.

51. Tapia JJ, D’Souza R. Data parallel algorithms for large-scale
real-time simulation of the cellular potts model on graphics
processing units. In: Proceedings of SMC2009. San Antonio,
Texas: IEEE, SMC, 2009.

52. Singler J. Implementation of cellular automata using a
graphics processing unit. In: Proceedings of ACM Workshop
on General Purpose Computing on Graphics Processors. Los
Angeles, CA: Workshop Proceedings, 2004.

53. Tran J, Jordan D, Luebke D. New challenges for cellular
automata simulation on the GPU. ACM Workshop on
General Purpose Computing on Graphics Processors. Los Angeles,
CA: Workshop Proceedings, 2004.

54. Lysenko M, D’Souza RM. A framework for megascale
agent-based model simulations on the GPU. JArtificial Soc
& Social Simul 2008;11(4):10.

55. Nyland L, Harris M, Prins J. Fast N-Body Simulation with
CUDA. In: Nguyen H (ed). GPUGems 3. Addison Wesley
Professional, 2007.

56. Green S. CUDA Particles. NVIDIA SDK White Paper,
2007.

57. Richmond P, Romano D. Agent Based GPU, a Real-time
3D Simulation and interactive visualisation framework for
massive agent based modelling on the GPU. In: Proceedingsof
International Workshop on Supervisualisation 2008 (IWSV08),
ICS08, Kos Island, Greece, 2008.

58. Erra U, De Chiara R, Scarano V, et al. Massive Simulation
using GPU of a Distributed Behavioral Model of a Flock with
Obstacle Avoidance, 2004. http://wonderland.dia.unisa.it/
projects/gebs/ (4 December 2009, date last accessed).

59. Reynolds C. Big fast crowds on PS3. In: Sandbox’06:
Proceedings of the 2006 ACM SIGGRAPH Symposium
on Videogames. Boston, MA: New York, ACM, 2006;
113–21.

60. Le Grand S. Broad-Phase Collision Detection with CUDA.
In: Nguyen H (ed). GPU Gems 3. Addison Wesley
Professional, 2007.

61. Moon B, Jagadish Hv, Faloutsos C, et al. Analysis of the
clustering properties of the Hilbert space-filling curve.
IEEETrans on Knowl and Data Eng 2001;13(1):124–41.

62. Buck I, Foley T, Horn D, et al. Brook for GPUs: stream
computing on graphics hardware. ACMTrans Graph 2004;
23(3):777–86.

63. Fan Z, Qiu F, Kaufman A. ZippyGPU: programming
toolkit for general-purpose computation on GPU clusters.
Supercomputing 2006 Workshop on Gneral Purpose GPU
Computing 2008. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi¼?doi¼10.1.1.127.5390 (4 December 2009,
date last accessed).

64. McCool MD, Qin Z, Popa TS. Shader metaprogramming.
In: HWWS’02: Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS Conference on Graphics Hardware.
Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2002;57–68.

65. The OpenCL 1.0 Specification. Khronos Group, 2009.
Khronos Group Technical Report.

66. Howes L. Loading Structured Data Efficiently using CUDA.
NVIDIA, 2007.

67. Sengupta S, Harris M, Zhang Y, et al. Scan primitives for
GPU computing. In: GH’07: Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2007;97–106.

68. van Meel JA, Arnold A, Frenkel D, et al. Harvesting
graphics power for MD simulations. Mol Simul 2007;34:
259–66.

69. Walker DC, Southgate J, Hill G, et al. The epitheliome:
agent-based modelling of the social behaviour of cells. Bio
Systems 2004;76(1^3):89–100.

70. Sun T, McMinn P, Holcombe M, et al. Agent based mod-
elling helps in understanding the rules by which fibroblasts
support keratinocyte colony formation. PLoS ONE, 2008;
3(5):e2129.

71. Harris M.Optimizing Parallel Reduction in CUDAWhitepaper.
NVIDIA Developer Technology Group, 2008.

72. Anderson DP. BOINC:ASystem forPublic-ResourceComputing
and Storage 2004;4–10. http://dx.doi.org/10.1109/GRID.
2004.14.

Agent-based simulation with FLAME for the GPU 347
 at R

oyal H
allam

shire H
ospital on June 27, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/

